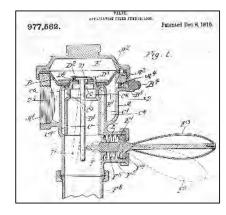
Understanding the Difference between Diaphragm and Piston Flushometers

Presenters

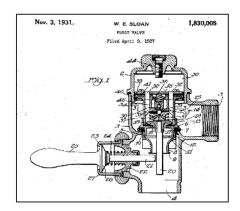
Rolando Zambrano Associate Product Line Manager Sloan Valve Company Franklin Park, IL

Don Yurkovich Regional Sales Manager Sloan Valve Company Franklin Park, IL

Agenda

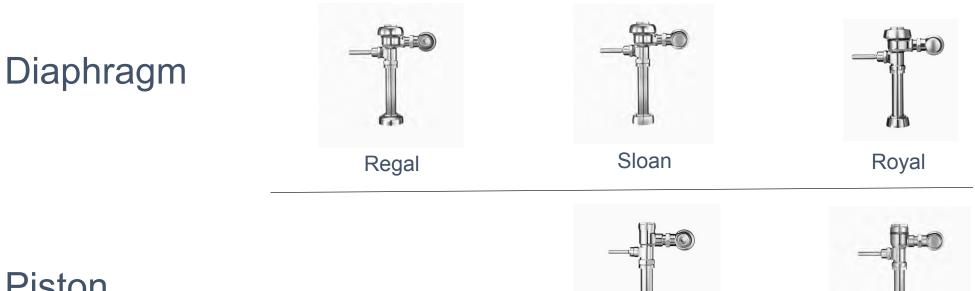

This presentation will cover:

- Origins of piston and diaphragm technology
- Fundamental operating principles
- Features and benefits of each flushing method
- Selection criteria
- Summary


THE ART OF SUSTAINABLE INNOVATION

History

1906 Sloan invents the Diaphragm Flushometer


- Replaced overhead tanks
- Relied on water pressure, not gravity
- Used less water and energy

- Withstood hard water*
- Better under low pressure
- Tolerated debris*

Which Sloan products are Diaphragm or Piston?

Which Sloan Products are Piston or Diaphragm?

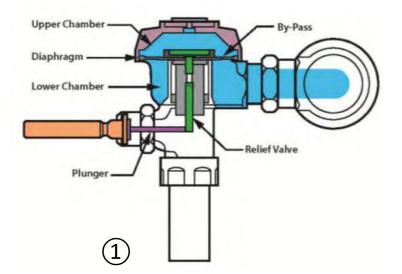
Diaphragm

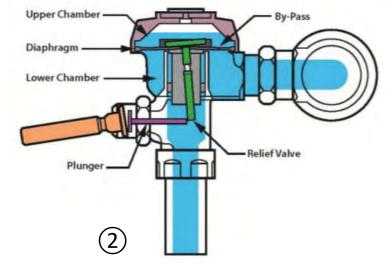
Regal

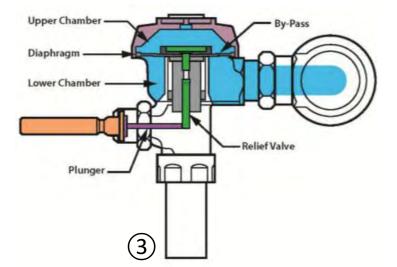
Sloan

Royal

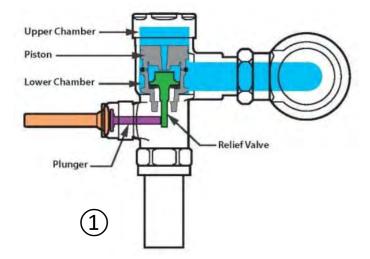
Piston




Gem


Crown

How A Diaphragm Works



Incoming pressure to the upper chamber seals the diaphragm down over the lower chamber Moving the handle causes the diaphragm to flex, releasing water into the fixture The diaphragm re-seals as the upper chamber re-pressurizes

All Sloan diaphragm flushometers are "non-hold open" design

How A Piston Works

Upper Chamber Piston Lower Chamber Plunger 2

Lower Chamber

Incoming pressure to the upper chamber seals the piston down over the main seat Moving the handle causes the piston to slide up, releasing water into the fixture

The piston re-seats as the upper chamber re-pressurizes

Sloan Piston Valves are also "non-hold open" design

Upper Chamber

Piston

Is Performance Different?

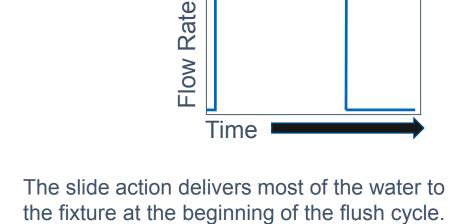
Both do the **SAME** thing:

- Control the flow rate and volume of water
- Reset quickly for the next flush

They have **DIFFERENT** internal sealing methods:

- Diaphragm Static (flexing) seal
- Piston Dynamic (sliding) lip seal

Different sealing methods create different flush curves


Why do Flush Curves Matter?

Diaphragm

The flexing action provides a smooth open and close cycle.

Having a gradually decreasing flow at higher pressures prevents a "hard close."

A slower close of the flush cycle helps prevent noise.

Piston

A quick in-rush of water into a old style washdown fixture at less than 25 PSI could help to clear the bowl.

Variables That Can Impact Selection

Water Supply

- Flow
- Pressure
- Properly sized (strong)
- Under sized (weak)

Water Quality

- Chlorine/Chloramines
- pH
- Sediment

Fixture Type

- High efficiency (HE)
- Closet
- Urinal

Usage Pattern

- Frequency
- Volume

Design Element Summary

Basic Design	PISTON	DIAPHRAGM	Why It Matters
Valve Body Construction	Semi red brass	Semi red brass	Better corrosion resistance than yellow brass
Valve Mechanism	Non-hold open	Non-hold open	Prevents water waste and vandalism
Sealing Mechanism	Dynamic	Static 🗸	Diaphragm seal wears less
Stroke Length	Long 🗸	Short	Longer piston stroke less sensitive to system change
Sealing Surfaces	3	2✓	50% more seals

Sloan piston and diaphragm valves have the same rough-in height

Operating Performance Summary

Condition	PISTON	DIAPHRAGM	Why It's Better
Low Pressure	Better 🗸	Good	Performance below 25 PSI
High Pressure	Good	Better 🗸	Slower shut off at higher pressure, less noise
Under Sized (Weak) System	Better 🗸	Good	Dynamic pressure performance
Fixture Back Pressure	Good	Better 🗸	Adapts to fluctuations
High Chloramines	Good	Better 🗸	Synthetic diaphragms last longer
Sediment	Poor	Better 🗸	Less wear and rubbing
Manual to Sensor Retrofit Options	Less	More 🗸	Many more options

Perception vs. Reality

"Piston valves work better with low pressure and gritty water."

- May have been true from 1928 to 1997* when high efficiency fixtures were introduced
- Modern fixtures require at least 25 PSI to function properly
- Older, less efficient wash down fixtures with low pressure might use pistons
- Diaphragms last longer than pistons in gritty water because they don't slide and wear

* Enforcement of Energy Policy Act of 1992 began January 1st, 1997 mandating 1.6 GPF max. for water closets and 1.0 GPF max. for urinals sold in the USA.

This is no longer a true statement

Perception vs. Reality

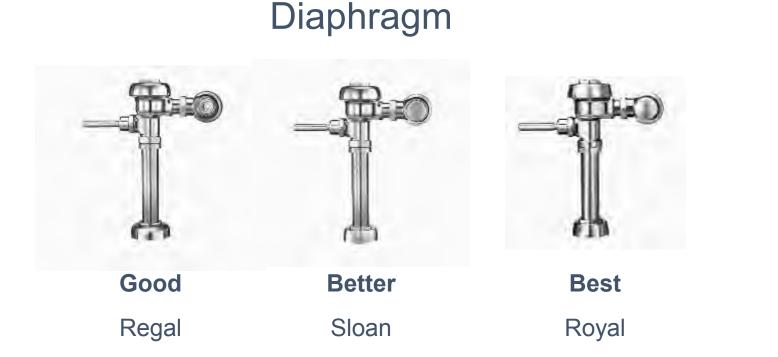
Other misconceptions...

"Piston Valves never need repair"

• All valves will eventually need repair

"When piston valves fail, they fail in the closed position"

 Both Pistons and Diaphragms can fail in the open position for the same reasons – wear, abrasion and clogged bypasses


Summary

- Sloan invented both diaphragm and piston valves. Both technologies have strengths
- Water quality, system dynamics, and restroom traffic will impact which is selected
- Modern fixtures require 25 PSI or more and tend to benefit from diaphragm technology
- In low pressure (<25 PSI), under sized (weak), and older fashioned systems pistons have an important role to play

Join Our Next Webinar – Thurs, May 21: Regal vs. Sloan vs. Royal Flushometers

Register to attend here!

Upcoming Sloan Training Webinars

April 30th

Sloan Sensor Faucet Recommendations for Return-to-Work and Facility Start-Up May 7th

Battery Truths and Myths

May 14th

Touch-Free Hygiene in K-12 and Higher Education Facilities May 21st

Regal vs Sloan vs Royal

May 28th

PWT New Product Launch

Training Comments, Questions, or Suggestions?

Andrew Warnes Manager – Technical Training Sloan Valve Company 10500 Seymour Avenue Franklin Park, IL USA 60131-1259

Office: +1-800-982-5839 E-mail: <u>training@sloan.com</u> Web: <u>sloan.com</u>

